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Introduction 
 
 
 Ensuring compliance with environmental standards is a challenging endeavor. The 

Environmental Protection Agency (EPA) and analogous state agencies are tasked with holding 

public and private groups accountable to abide by environmental laws. While routine inspections 

are carried out across the country, there are too many polluting facilities to check every site for 

violations. Instead, with limited time and resources, inspectors must strategically focus their 

attention on a handful of sites most likely to pose an environmental risk to Americans. As 

historical data becomes more widely available and trustworthy, inspectors can make more 

informed decisions about which sites to target. 

 This project aims to uses predictive modeling and machine learning techniques to assist 

the EPA with Clean Air Act (CAA) targeting. The algorithm put forward by this study uses the 

available data to find an optimal policy for inspecting facilities that are most likely to be 

violating air pollution standards. The policy function, implemented in R Programming Language, 

classifies inspections as either ‘worth conducting’ or ‘not worth conducting,’ based on the 

likelihood that an inspection leads to a formal legal enforcement action. The algorithm iterates 

through the data by date to update and refine its policy in order to maximize expected reward. 

The model seems to be a viable opportunity for EPA’s Department of Enforcement and 

Compliance Assistance (DECA) to improve its inspection-targeting strategy. Additionally, the 

model has certain advantages over existing algorithms used in forecasting inspections and 

allocation problems.  

	
	 	



The Issue 
 
 
 Environmental laws are only effective if they hold organizations accountable for non-

compliant and unsafe pollution practices. The EPA and state governments must conduct 

inspections each year to ensure that facilities meet environmental standards established by the 

Clean Air Act (CAA), Clean Water Act, Safe Drinking Water Act, Resource Conservation and 

Recovery Act (RCRA), and others. With recent advances in the scope and availability of 

historical data, inspectors and enforcement branches have more tools at their disposal to 

strategically allocate time and resources. Still, this paper suggests that current EPA targeting 

strategies do not fully utilize the available data. 

 Currently, CAA inspectors choose targets based on a few key policies and facility 

characteristics.1 Very large facilities – known as Title V Majors – are required by law to be 

inspected periodically. Smaller facilities do not have required inspections and are therefore 

especially important to target as potential non-compliant or even fraudulently registered 

polluters. 

Important sources of data include self-reported emissions data from the Toxics Release 

Inventory (TRI) and National Emissions Inventory (NEI),2 as well as stack EPA- and state-

conducted stack tests of pollution levels.3 Once a significant violation is found, the EPA often 

targets organizations that have common attributes with the non-compliant organization. 

While these rules of thumb are likely to help EPA’s targeting strategy, formal data 

analytics and mathematics may further help enforcement branches meet their goals. This is 
																																																								
1 Observations of current EPA targeting operations come from personal experience as an intern in EPA Region II. 
Experiences include frequent meetings with CAA enforcement branch members and inspectors. 
2 Toxics Release Inventory data and information can be found at https://www.epa.gov/toxics-release-inventory-tri-
program/learn-about-toxics-release-inventory. National Emissions Inventory data and information can be found at 
https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei. Only TRI data, downloaded from 
EPA Envirofacts Database, was used for this particular study. 
3 Stack test data accessed via EPA’s Enforcement and Compliance History Online (ECHO), retrieved at: 
https://echo.epa.gov/tools/data-downloads. 



because, of course, human decision-making is imperfect. An internal EPA study by Stephanie 

Wilson revealed that there are certain ‘hot-spots’ and ‘cold-spots’ in Region II that are 

disproportionately over- or under-inspected.4 While these particular locations are confidential to 

non-EPA personnel, more general and qualitative evidence suggests that EPA inspections biases 

do exist. 

Figure (1) depicts inspections in Region 2 over the past 10 years. As to be expected, 

inspections occur more often in heavily populated areas. However, beyond that, it seems that 

very many of the inspections that are outside of cities occur near major roads between cities. One 

explanation is that there are simply more facilities in easy-to-access places, so we should expect 

more inspections along roads. But it seems very possible that part of the observed phenomenon is 

simply a function of convenience. Inspectors may not want to venture far for an individual 

facility, even if that facility may be just as likely to pose a threat to the environment as a facility 

in the middle of New York City. Of course, the EPA must consider the costs and resources that 

might be required to inspect a far-away, potentially hazardous facility. Still, it is important to 

acknowledge where biases might exist, and how these biases can impact successful enforcement. 

 Beyond the potential for bias, a data-driven approach may prove beneficial simply 

because of the scope of data available. Currently, inspectors consider only a handful of features 

when making their decisions.5 But a data-driven approach is able to handle hundreds of variables 

that may be causally related to whether an inspection is worth conducting. Further, machine-

learning algorithms can analyze trends and changes over time and accordingly refine the 

decision-making strategy for targeting. 

																																																								
4 Stephanie Wilson is a colleague on the Region 2 Data Management Team. She used geographical data software to 
cluster inspections by location. The quantitative results of the study are confidential to non-EPA personnel. 
5 Information comes from meetings with Air branch inspectors in EPA’s New York City office. 



 Improving the EPA’s targeting strategy will enable the agency to find and fix hazardous, 

non-compliant pollution behavior so that fewer American citizens may be exposed to Hazardous 

Air Pollutants (HAPs). A data-driven approach will not only help increase the efficiency of EPA 

operations, but also protect citizens in the process. 

 

	
 

Figure (1): Map of state and EPA inspections in New York and New Jersey over the past 10 years 
Each red point represents one full- or partial-compliance evaluation. Many inspections occur in cities 

and near roads between cities. 
	
	 	



Finding the Proper Model 
 
 
 Using statistics to optimize inspections is a challenge for both enforcement agencies and 

researchers. A brief overview of related studies will help describe the motivations and reasons 

for the model used in this project. 

 Very similar research has been conducted on solid waste management inspections under 

the U.S. Resource Conservation and Recovery Act (RCRA). University of Chicago has led 

research initiatives to devise models that optimize RCRA inspections for solid waste 

management and pollution.6 After meetings with both U. Chicago researchers and EPA 

employees, the initial approach that this project took was to implement a Random Forest 

algorithm - a supervised machine-learning algorithm that uses decision trees to classify 

inspections that are likely to uncover non-compliance.7 

Another related project is the Food Inspection Forecasting project conducted by the City 

of Chicago. The open-source project on GitHub used data analytics to markedly improve the city 

government’s ability to find non-compliant and hazardous health practices in restaurants.8 Also 

using a supervised model-based algorithm, the project conducts regressions with regularization 

parameters to identify which inspections maximize the probability of non-compliance. 

The models implemented in these studies are promising strides towards more effective 

regulation of non-compliant and hazardous behaviors by both companies and public facilities. 

However, they have their disadvantages. In particular, the Random Forest and traditional 

																																																								
6 See Eric Potash, et. al. “Predictive Modeling for Environmental Protection: Hazardous Waste Management.” U. 
Chicago, 2016. http://k2co3.net/assets/pdf/rcra_preprint.pdf. 
Ongoing research is being conducted by Cynthia Gyles and Sarah Armstrong at Univerity of Chicago Urban Labs.  
See https://urbanlabs.uchicago.edu/labs/energy-environment. 
7 A full report and implementation of the Random Forest model can be provided by request. The report was written 
for EPA Region II in August 2017. 
8 See “Food Inspection Forecasting: Optimizing Inspections with Analytics.” City of Chicago 2017. 
https://chicago.github.io/food-inspections-evaluation/. 
For implemented code in R and more resources, see https://github.com/Chicago/food-inspections-evaluation. 



regression models fail to account sufficiently for facilities that have never been inspected. This is 

a typical example of the ‘multi-armed bandit’ problem, as described frequently in decision-

making literature.9 

The multi-armed bandit problem is a question of allocation that deals with the decision 

between “exploitation” and “exploration.”10 Classically introduced using the example of multiple 

slot machines, the bandit problem arises when the winning rate for each slot machine is 

unknown. In this type of problem, an optimal algorithm must strike a balance between playing 

the machines that have already been successful (“exploitation”) and finding new machines that 

may offer even higher winning rates (“exploration”). Our EPA problem is analogous to the 

bandit problem because there are so many facilities that have never been inspected before. The 

EPA knows they must inspect major polluters every few years – what they’re interested in is 

those facilities that have been able to avoid EPA enforcement for years. Thus, while the precise 

workings of University of Chicago’s algorithm is confidential,11 it is likely that the type of model 

used for optimizing RCRA inspections will favor those facilities that have had many prior 

infractions to those that have never been inspected.12 

To solve this problem, a different approach to the data is necessary. In particular, 

performing a regression on the entire dataset may not properly account for changes in particular 

facilities over time. A favorable approach could iterate through the history of enforcement 

practices at EPA and continually update its parameters based on the changing data. Accounting 

																																																								
9 See Sébastien Bubeck and Nicolò Cesa-Bianchi, “Regret Analysis of Stochastic and Nonstochastic Multi-armed 
Bandit Problems,” Foundations and Trends in Machine Learning, vol. 5, no. 1, 2012. 
http://dx.doi.org/10.1561/2200000024. 
10 Ibid.,  1-2. 
11 Information about confidentiality comes from email consultation with a Sarah Armstrong, a researcher at 
University of Chicago’s Urban Labs. 
12 Potash,et. al. (6) discuss selection bias and non-random selection of facilities in historical data, and try to re-
weight observations to account for the bias. However, this issue is distinct from the Bandit Problem, which arises 
even when historical data is a uniformly random sample. 



for the multi-armed bandit problem might further improve the algorithm’s ability to identify non-

compliant facilities. 

Ultimately, the approach used for this project is a semi-model free, unsupervised machine 

learning method that tries to tries to implement both potential improvements. For discretized 

time-steps, the algorithm iterates through the history of available data to build a policy that finds 

the facilities most likely to be in violation of the Clean Air Act. Then, at each time step, the 

algorithm can draw facilities that have never been inspected before to balance the exploitation-

exploration tradeoff. Hopefully, this model can more aptly describe this particular allocation 

decision-making problem and, further, inform future work in applied data analytics and 

forecasting.  

	
	 	



The Policy Function Search 
 
 
 One important challenge for a data-driven targeting strategy is that facilities change over 

time. Therefore, common machine learning strategies like the Random Forest may not 

adequately model the data when applied to the entire dataset. For this reason, a policy search 

method was implemented to read through the data chronologically and update parameters to 

approach an optimal policy.13 

 The policy function search iterates through the data to define a certain policy. A policy is 

a function of the input data that finds an optimal strategy for a given time. The model is derived 

from the following definitions and formulations:14 

  
𝑋 !  State Variable  Matrix of features that describe a facility at time k 
𝑣(!)!"#$ Dependent Variable Boolean – whether an inspection led to enforcement  
𝜙 Basis – Decision Var. A set of functions that determine the strategy (policy) 
∏! 𝑋  Policy   The strategy for decision-making 
𝜁 𝑦;𝜙  Objective Function Sum of error or reward function: 

𝑓 𝑣(!)!"#$ −∏! 𝑋 !

!

 

 
In this case, the formulation of the policy function is a linear equation of each time-variant 

predictor. Time was discretized into time-steps k, with each ∆𝑘 equal to 91 days. Therefore, at 

each time k, the following raw data is computed for each facility:  

days_since_inspection Number of days since last air inspection 
number_prior_inspections Number of prior air inspections 
never_inspected Indicator: facility has never been air inspected 
days_since_stack_test Number of days since last stack test 
number_prior_stack_tests Number of prior stack tests 
last_stack_test_result Result of last stack test (pass/fail/other) 
never_stack_tested Indicator: facility has never had a stack test 
days_since_rcra_inspection Number of days since last RCRA (waste) inspection 
																																																								
13 For more on Policy Search Methods, see Warren B. Powell, “Optimization Under Undertainty: A Unified 
Framework,” Wiley-Interscience, September 18, 2017. 
14 This particular formulation of the model was created in consultation with Elahesadat Naghib, Ph.D. candidate in 
Operations Research and Financial Engineering at Princeton University. 



number_prior_rcra_inspections Number of prior RCRA inspections 
number_prior_rcra_violations Number of prior RCRA violations 

average_rcra_compliance 1 −  (
𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑟𝑖𝑜𝑟_𝑟𝑐𝑟𝑎_𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠
𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑟𝑖𝑜𝑟_𝑟𝑐𝑟𝑎_𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠)  

never_rcra_inspected Indicator: facility has never been RCRA inspected 
days_since_enforcement Number of days since last CAA formal enforcement action 
number_prior_enforcements Total number of prior CAA formal enforcement actions 
last_penalty_amount Last non-zero monetary penalty paid for non-compliance 

average_air_compliance 1 −  (
𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑟𝑖𝑜𝑟_𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡𝑠
𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑟𝑖𝑜𝑟_𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ) 

never_enforced Indicator: facility never had a CAA formal enforcement action 

last_reported_emission 
Last self-reported Hazardous Air Pollutant (HAP) emission 
(lbs) 

emissions_trend 4-year trend in Hazardous Air Pollutant (HAP) emissions 
missing_emissions_observation Indicator: No self-reporting emissions data for the given year 

 
Ultimately, these variables define our observation matrix 𝑋 ! . However, in their current 

form, the features each have probability distributions that are quite variant in mean, range and 

deviation. Histograms for each non-indicator variable are reported in figure (2) to provide insight 

on the probability distributions of each predictor. 

From the raw data defined above, phi-functions were defined to transform the raw-data 

into more a more balanced form, for analytic and numerical reasons. The phi functions are the 

basis functions upon which the observation matrix 𝑋 ! . The 𝜙-functions are reported below, and 

density histograms are reported in figure (3). 

 
𝜙! log (𝑑𝑎𝑦𝑠_𝑠𝑖𝑛𝑐𝑒_𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛) 
𝜙! log((𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑟𝑖𝑜𝑟_𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠)+ 1) 
𝜙! log((𝑙𝑎𝑠𝑡_𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑_𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛)+ .0005) 
𝜙! (𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠_𝑡𝑟𝑒𝑛𝑑) 
𝜙! log(𝑑𝑎𝑦𝑠_𝑠𝑖𝑛𝑐𝑒_𝑟𝑐𝑟𝑎_𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛) 
𝜙! log((𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑟𝑖𝑜𝑟_𝑟𝑐𝑟𝑎_𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠)+ 10) 
𝜙! log((𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑟𝑖𝑜𝑟_𝑟𝑐𝑟𝑎_𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠)+ 10) 
𝜙! (𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑟𝑐𝑟𝑎_𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒) 
𝜙! log(𝑑𝑎𝑦𝑠_𝑠𝑖𝑛𝑐𝑒_𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡) 
𝜙!" log((𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑟𝑖𝑜𝑟_𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡𝑠)+ 5) 
𝜙!! log((𝑙𝑎𝑠𝑡_𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑎𝑚𝑜𝑢𝑛𝑡)+ 1) 
𝜙!" (𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑎𝑖𝑟_𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒) 



𝜙!" log(𝑑𝑎𝑦𝑠_𝑠𝑖𝑛𝑐𝑒_𝑠𝑡𝑎𝑐𝑘_𝑡𝑒𝑠𝑡) 
𝜙!" log((𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑟𝑖𝑜𝑟_𝑠𝑡𝑎𝑐𝑘_𝑡𝑒𝑠𝑡𝑠)+ 5) 
𝜙!" (𝑑𝑎𝑦𝑠_𝑠𝑖𝑛𝑐𝑒_𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 ∗ (1− 𝑛𝑒𝑣𝑒𝑟_𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑) 
𝜙!" (𝑛𝑒𝑣𝑒𝑟_𝑟𝑐𝑟𝑎_𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑) 
𝜙!" (𝑑𝑎𝑦𝑠_𝑠𝑖𝑛𝑐𝑒_𝑟𝑐𝑟𝑎_𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 ∗ (1− 𝑛𝑒𝑣𝑒𝑟_𝑟𝑐𝑟𝑎_𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑) 
𝜙!" (𝑛𝑒𝑣𝑒𝑟_𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑑) 
𝜙!" (𝑑𝑎𝑦𝑠_𝑠𝑖𝑛𝑐𝑒_𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 ∗ (1− 𝑛𝑒𝑣𝑒𝑟_𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑑) 
𝜙!" (𝑚𝑖𝑠𝑠𝑖𝑛𝑔_𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠_𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛) 
𝜙!" log((𝑙𝑎𝑠𝑡_𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑_𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ∗ (1−𝑚𝑖𝑠𝑠𝑖𝑛𝑔_𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠_𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)+ 1) 

 
 

Now that each ϕ-function is set, we can define the model. Using iterative linear 

regressions, the algorithm finds an optimal set of coefficient parameters 𝛼!,𝛼!,𝛼!… . At each 

time-step k, facilities receive a score based on their features that represents the relative likelihood 

of a CAA violation. Then, we compute which facilities are inspected between times k and (k+1), 

and whether the facilities that are inspected have a subsequent formal enforcement action within 

1000 days of inspection.15 We call this response variable 𝑣(!)!"#$. Comparing the computed 

scores to the actual response variable, the algorithm updates its policy to minimize error.  

 

𝑋(!) =
ϕ!
⋮

ϕ!
⋮

ϕ!
⋮

ϕ!
⋮ ⋯  

 

𝑣(!)!"#$ =

0
−1
0
1
⋮

 

 
At each iteration, we compute the changes in scores ∆ϕ!,∆ϕ!,∆ϕ!,…  and changes in basis 

functions  {∆ϕ!,∆ϕ!,∆ϕ!,… }, and use the stochastic gradient method updating process to scale 

our updating procedure: 

 
																																																								
15 Defining the dependent variable 𝑣(!)!"#$ was an involved process because there wasn’t an explicit link in the data 
between inspections and legal enforcement actions. However, the 1000-day cutoff is not completely random – it is 
statistically derived. A histogram of the time-delay between inspections and enforcement actions reveals that 90% of 
delays occur within 1001 days. Additionally, air compliance personnel at EPA confirmed that enforcement actions 
almost never surpass a 3-year delay after an inspection occurs. 



• Regress 𝑣(!)!"#$ on 𝑋(!) to attain coefficients 𝛽!,𝛽!,𝛽!…  
• Compute discretized differential values {∆𝑆!,∆𝑆!,∆𝑆!,… }, {∆ϕ!,∆ϕ!,∆ϕ!,… } 
• Use median ∆!!

∆!!
 to scale the learning rate 𝜃 for each coefficient 𝛼 

 
The process to update alpha-values at each time-step is summarized with the following  

equation: 

𝛼! !!! = 𝛼! ! + 𝛽!
!!! − 𝛼! ! ∗ 𝜃 ! ∗

∆𝑆!
∆𝜙!
∆𝑆!"#
∆𝜙!"#

 

In this case, we use learning rate parameter 𝜃 ! = !
!
 

 
Iterating through the data starting in the year 2000, we hope to see signs of convergence 

in our coefficient parameters, which would signify a stable equilibrium relationship between the 

predictors used and non-compliant polluting.16 

 
 

																																																								
16 The iterations begin in 2000 because at this point the quantity and quality of data markedly improves. That said, 
no data is emitted from the model. The year 2000 is simply when the algorithm begins to look backwards at the 
history of enforcement data. 



 
 

Figure (2): Histograms of time-dependent variables in raw dataset 
Some plots have large outliers because of various imputation methods for missing values. 

However, the linear model uses indicator variables to address missing data. 
 



 
 

Figure (3): Histograms of 𝜙-functions for each non-categorical variable in 𝑋 �  
Each distribution is centered at 0 with unit standard deviation. Again, plots with large outliers 

are the result of missing values that ultimately do not impact the model. 
 
	
	
	 	



Stationary Facility Characteristics 
 
 
 The stochastic gradient method and policy function described above were used only for 

the facility features that change over time. As mentioned, a proper algorithm for optimizing 

inspections must weigh ‘exploitation’ of findings with ‘exploration’ of sites that have never been 

inspected. To include these facilities in our model, we must devote a certain proportion of 

inspections at each time step to exploring new possible non-compliant facilities. 

 Since the facilities in question have never been inspected before, little is known about 

their history of compliance, pollution levels, or stack test results. In other words, the predictors 

used for the stochastic gradient method will not suffice in deciding which new facilities to 

inspect. Therefore, we must treat new facilities with a separate statistical procedure. One option 

is to simply take a random sample of new facilities to target in addition to those output by the 

policy function. But with tens of thousands of facilities that have never been inspected – many of 

which are tiny – a purely random approach would not be strategic. 

Instead, traditional regression techniques were implemented to help choose which new 

facilities to inspect at each time step. Since we do have some data on new facilities – just not 

historical enforcement data – we can use statistical methods to inform target selection of new 

facilities. More specifically, using the pool of data for facilities that have been inspected, we can 

regress the dependent variable 𝑣(!)!"#$ on facility features that are invariant with time. Then, 

with coefficients for each variable used, we can pick a weighted random sample from the pool of 

new facilities to inspect at time k. The predictors available for all facilities – both inspected and 

non-inspected – are listed below: 

state Which state the facility is located in 
EPA_Region EPA region that the facility is located in 

naics_industry_sector Which industry the facility belongs to. Variable uses first 2 digits of 
NAICS codes. Manufacturing and energy specified to subsector 



facility_type_code What type of facility it is - a corporation, county government, district, 
federal facility, tribal government, etc. 

air_pollutant_class_code Whether the air-polluting facility is registered as major, minor, synthetic 
minor, unknown, not applicable, other. 

air_operating_status_code Whether the facility is operating, temporarily closed, seasonal, under 
construction, etc. 

indian_country Indicator: Whether the facility is located in Indian Country 
non_attainment_area Indicator: Whether the facility is in a Non-attainment Area 

percent_minority The percentage of the population within a 3-mile radius that is not white 
(or is of Hispanic origin) 

population_density The number of persons per square mile within a 3-mile radius 

environmental_justice Indicator: Whether the facility is considered by the EPA to be in a 
community with Environmental Justice concerns 

RCRA_permit_types Set of 6 indicators: If the facility has a RCRA permit, then this field 
classifies their permit type - TSDF, LQG, SQG, CESQG, etc. 

pollutants Set of 46 indicators: Whether the facility is a registered polluter of the top 
46 most common pollutants - benzene, xylene, CO2, etc. 

onsite_methods_codes Set of 7 indicators: What processes the facility uses in emitting air 
pollutants - flare, condenser, scrubber, absorber, etc. 

 
 

To create weights for sampling the non-inspected facilities, a random forest machine-

learning model was used. The random forest is conveniently equipped to deal with categorical 

variables, so it was a good option for this particular dataset. Still, it may be possible to use 

regularized regression techniques at this step of the procedure. 

 By regressing inspection results on stationary (unchanging) facility characteristics, our 

goal is to inspect new facilities that are likely candidates for non-compliant pollution practices. 

The algorithm devotes a certain proportion 𝛾 = !
!
 of inspections to exploring new facilities at 

each time k. That said, it is important to note that this procedure would be a departure from the 

history of EPA decision-making, which has not quantitatively balanced the bandit trade-off issue. 

Therefore, we simply begin including a proportion of new facilities now, and the algorithm 

begins the ‘exploration’ procedure from now on.	  



Findings 
 
 

The linear policy function search model was implemented and alpha values were 

computed for time-dependent features 𝜙. The stochastic gradient method yielded alpha-values 

that show evidence of convergence for 𝛼!…𝛼!" . The computed alpha-values at each time-step 

k of the process are plotted in figure (4). 

The results in figure (4) indicate that the policy search process reaches an asymptotic 

solution for almost every alpha-value. There are some time-dependent changes that are not fully 

asymptotic – visible in the plots for 𝛼! and 𝛼!" in particular. In these plots, there seem to be 

local minima and maxima where the variable begins to switch direction. Still, these plots show 

some evidence of leveling off as time passes. 

Ultimately, the algorithm produced higher scores for facilities that it deemed most likely 

to be in violation of CAA standards. The random forest output added a portion of never-before-

inspected facilities for EPA targets in 2018. Together, the list of facilities will help inform EPA 

Region 2’s 2018 list of target facilities. While quantitative results, including the list of 

recommended facilities, are confidential, the methods discussed may be applied to publically 

available EPA data to attain identical results. 

	



	
 

Figure (4): Alpha-value definitions as a function of time. 
Convergence implies that the model approaches a stable point for large k. 

	
	
	 	



Further Study & Conclusion 
 
 
 This study suggests that the policy function search is a viable option for targeting and 

allocation strategy. The linear model and stochastic gradient method were implemented as a 

simple example of the policy function search in practice. This approach holds certain advantages 

over existing methods, including its treatment of time-dependent data and never-inspected 

facilities. That said, newer and more advanced algorithms can further improve the targeting 

strategy. 

 In particular, non-linear models may prove advantageous over the model produced in this 

study. Regularized regression techniques – like a ridge regression – at each time-step could 

possibly improve the policy. More complex models could further benefit the model – a deep 

neural net (DNN) policy could be especially powerful at classifying targets. This would involve 

many more parameters and a much longer computation time, but these drawbacks could pay off 

in model performance. 

 Another outlet for further study is applying the machine-learning techniques discussed to 

other regulatory operations. Other environmental laws – including Clean Water Act and Safe 

Drinking Water Act – do not currently use machine-learning techniques to inform targeting 

strategy, to my knowledge. Similar techniques may be applied to health and safety inspections in 

other areas of government as well. 

 Despite the complexity of a quantitative approach to inspections strategy, the potential 

for pay-off is significant. A move towards smarter, data-driven operations would not only save 

time and resources for EPA inspectors, but would help protect U.S. residents from dangerous 

environmental pollutants. Discovering violations in environmental law helps minimize human 

exposure to hazardous air pollutants and chemicals that threaten our environment. It is the goal 

of this study to inform policy and positively impact U.S. air quality and general well-being.  
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